The City of Beverly Hills Public Works Department values transparency; we hope you find this report clear and easy to understand. If you have any questions, please call us at 310.285.2467.
You’ll be reading more about sustainability in the coming year. We’re updating the City’s Sustainability Plan, and planning on hosting a series of sustainability talks and presentations beginning in the Fall of 2019. The United Nations defines sustainability as “meeting the needs of the present without compromising the ability of future generations to meet their own needs.” In the long-term, sustainability for Beverly Hills means that the City has the capacity to provide the desired levels of service now and in the future. In the short term, providing opportunities to learn about and support the creation and development of a sustainable city can result in a community where residents, businesses and visitors continue to thrive.

Water is only a part of what we do, and it’s important that you as consumers are aware of the water quality delivered to you. Please review this year’s Water Quality Report and feel free to call us with any questions you may have. On behalf of the dedicated women and men of the Beverly Hills Public Works Department, thank you for your continuing trust in allowing us to serve you.

Sincerely,

Gil Borboa
Assistant Director of Public Works
Utilities Division

As your Beverly Hills Public Works Department, we are committed to providing residents, businesses as well as visitors with a reliable supply of high-quality water 24/7 every day, 365 days a year. Our water service goal is straightforward: we strive to deliver quality, service and value in everything we do, while maintaining our focus on water quality, water efficiency, developing our local water supply and promoting sustainable practices.

Maintaining high water quality standards and protecting our customers’ health and safety is our highest priority. We constantly monitor and sample the water in our distribution system to ensure the water we provide to you meets or surpasses increasingly stringent water quality standards. Over the last year, we tested more than 113 constituents. We are pleased to confirm that we met every primary and secondary state and federal water quality standard in 2018. This report provides you the results of our annual quality monitoring efforts as well as information of interest to residents, including water conservation.

In Beverly Hills, water efficiency is a way of life. Although mandatory water conservation requirements are no longer in place, please keep working on using water as efficiently as possible. Beverly Hills maintains a robust conservation program with tools and rebates to help you use water efficiently, which is especially important since we live in a traditionally dry climate. We encourage you to take advantage of our program, which will help you maintain your landscape’s healthy appearance while reducing your water use significantly as we head into the warmer months.

We’re getting closer to developing our local water supply, with design efforts starting on the recommissioning of our water treatment plant. Along with the rehabilitation of our existing wells and development of new wells, we anticipate producing local water from our groundwater supplies near the end of next year. Meanwhile, we’re still purchasing our water from Metropolitan Water District, which is why Metropolitan’s water is referenced in the water quality tables of this report.

In 2018, Beverly Hills’ water quality met or surpassed all public health standards set by state and federal regulations.

Read this report to learn more about the water provided by Beverly Hills and how the City delivers the highest quality of water year after year. You’ll also learn ways you can conserve and protect this precious resource.
ظاهر سالم، باعث کناره‌گیری منظوره اطراف منزل خودتان را حفظ کنید و در هنگام حال میزان مصرف آب را به طور چشم‌گیر کاهش دهید.

ما در حال تلاش‌کردن هستیم که با کمین آب به تکمیل این آب و هوای مطمئن در کل شهر دایره شرکت Water District Metropolitan می‌کمیم و به خاطر مهم‌ترین آن آب در ورود به شهر می‌کنیم. تا جدول‌های کیفیت آب این گزارش آن‌ها را شاهد است.

بافت جنگلی استانداردهای بالایی کیفیت آب و حفاظت از سلیمی و ایمنی مشتریان برای ما در بالاترین امکانات قرار داده‌ایم. به طور مداوم آب موجود در سامانه زیست محیطی را حداقل در حدود نزدیک راتریت نروژ و برزیل بیشترین کاهش‌های موجود را در این امکانات به شما با استانداردهای کیفیت آب که هم روز گذشته تا بخشی در این اعمال می‌شود، مطالعاتشان با حد آن‌ها از بالاتر به ما در طول یک سال گشته‌اند از 13 گزارش موجود برای یک آزمایش نمونه‌آمیزه، خشونت‌هایی که تا تاکنون کم‌همه مورد آموزش و آموزش در استانداردهای بالایی و قدرت بیشتر قرار داریم. برای 2018 و 2019، گزارشی جدیدی در تلاش نموده‌ایم که کم‌همه این موردت مراحل استانداردهای بالایی کیفیت آب در گزارش‌های صرف‌جویی در آب را در دسترس شما می‌گذارد.

بهره‌وری آب در بلوچستان، هدف اصلی است که احترام به جویایی و آب و هوای مطمئن به طور مداوم برداشته شده‌اند، اما لطفاً به کار خود برای این اقدام به کمک ایجاد کنید. ما شما را به طور مداوم و بدون نیاز به این است که برای اهداف به بهبود کیفیت آب نیاز به طراحی و تجهیزات ایجاد نمایید که شما کمک می‌کنید.
Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.

Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.

Pesticides and herbicides that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.

Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoffs, agricultural application, and septic systems.

Radioactive contaminants that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the U.S. Environmental Protection Agency (U.S. EPA) and the State Water Resources Control Board (State Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health. Additional information on bottled water is available on the California Department of Public Health website at https://www.cdph.ca.gov/Programs/CEH/DFDCS/Pages/FDBPrograms/FoodSafetyProgram/Water.aspx.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as those with cancer undergoing chemotherapy, persons who have undergone organ transplants or have HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections.

These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline at 800.426.4791.
Adding tap water with chlorine or chloramine to a tank can kill off fish quickly. It can also kill off important bio-filter bacteria. To keep your fish healthy and safe, be sure to specially treat your tap water before using it in your fresh or salt-water aquarium or pond.
Lead. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The City of Beverly Hills is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants.

If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the U.S. EPA Safe Drinking Water Hotline at 800.426.4791 or at http://www.epa.gov/lead.

Lead In Residential Plumbing

Homes built prior to 1986, which have had no plumbing upgrades, may have higher than acceptable lead levels in drinking water. Homes built after 1986, when laws were passed restricting the lead content of faucets and pipes, do not pose the same risk.
The City’s Treatment Plant has been offline for operational improvements. As a result, your water supply is currently being provided by Metropolitan Water District. Metropolitan imports water supplies from two main sources: the Sacramento and San Joaquin Rivers through the State Water Project and the Colorado River via the Colorado River Aqueduct.

State Water Project

About 30 percent of Southern California’s water travels a long distance though a complex delivery system called the California State Water Project. It is the nation’s largest state-built water storage and delivery system of reservoirs, aqueducts, power plants and pumping plants, supplying water to 25 million Californians and 750,000 acres of farmland.

Water supplies from Northern California are drawn from the crossroads of the Sacramento and San Joaquin rivers in the Delta region. They are transported in the State Water Project’s 444-mile California Aqueduct and serve urban and agricultural customers in the San Francisco Bay Area, as well as Central and Southern California.

Colorado River

Colorado River water is conveyed via the 242-mile Colorado River Aqueduct from Lake Havasu on the California-Arizona border, to Lake Mathews near Riverside. Built and operated by Metropolitan, the Colorado River Aqueduct has been the backbone of Southern California’s imported water supply for more than 70 years.

Along with the State Water Project, the Colorado River Aqueduct is one of two imported drinking water sources for Southern California. The water Metropolitan brings from both sources is first treated at the Weymouth Filtration Plant in La Verne and the Joseph Jensen Treatment Plant in Granada Hills before it is delivered to Beverly Hills.
Protecting Water Quality at the Source

As you read earlier, water imported by Metropolitan Water District (Metropolitan)—the regional agency that provides water to Beverly Hills—comes from two sources: the Colorado River and Northern California through the Sacramento-San Joaquin Delta. Each has different water quality challenges.

Water from the Colorado River via the Colorado River Aqueduct is considered to be most vulnerable to contamination from recreation, urban/stormwater runoff, increasing urbanization in the watershed, and wastewater. Water supplies from Northern California via the State Water Project are most vulnerable to contamination from urban/stormwater runoff, wildlife, agriculture, recreation, and wastewater.

Source water protection is an important issue for all of California. Large agencies are required by the Division of Drinking Water (DDW) to conduct an initial source water assessment, which is then updated through watershed sanitary surveys every five years. Watershed sanitary surveys examine possible sources of drinking water contamination and recommend actions to better protect these source waters.

The most recent surveys for Metropolitan’s source waters are the Colorado River Watershed Sanitary Survey – 2015 Update, and the State Water Project Watershed Sanitary Survey – 2016 Update. You can request a copy of the most recent Watershed Sanitary Surveys by calling Metropolitan at 213.217.6000.

The Drinking Water Source Assessment and Protection (DWSAP) Program conducted a source water assessment in August 2000 and completed the report on May 2001 for each groundwater well.

The groundwater sources are considered most vulnerable to the following activities not associated with detected contaminants: dry cleaning operations, park areas, residential housing, historical railroad rights-of-way, vehicle repair shops, gasoline stations, confirmed leaking underground storage tanks, utility station, parking lots, and government equipment storage areas.

A copy of the assessment may be viewed at:
DDW Los Angeles District Office
500 N. Central Ave., Suite 500
Glendale, CA 91203

You may request a summary of the assessment be sent to you by contacting the DDW Los Angeles District Office at 818.551.2004. For more details, contact Jason W. Dyogi, Water Quality Specialist, at 310.285.2467.

Protecting Our Local Watershed

Treatment to remove specific contaminants can be more expensive than measures to protect water at the source, which is why Beverly Hills and other water agencies invest resources to support improved watershed protection programs.

To protect and improve the water quality of our local watershed, the City of Beverly Hills partnered with the cities of Los Angeles, Culver City, Inglewood and West Hollywood as well as the County of Los Angeles and County of Los Angeles Flood Control District to form the Ballona Creek Watershed Management Group (BCWMG).

An important watershed in Southern California, the Ballona Creek Watershed covers approximately 130 square miles in the coastal plain of the Los Angeles basin, from the Santa Monica Mountains to the north, the Harbor Freeway (110) to the east, the Baldwin Hills to the South. It consists of an open 10-mile concrete channel from mid-Los Angeles to the Pacific Ocean at Playa del Rey. Feeding into the channel is a network of underground storm drain lines as well as major tributaries including Centinela Creek, Sepulveda Channel and Benedict Canyon Channel.

Since 49% of the watershed is covered by impervious surfaces, it is particularly vulnerable to pollutants such as trash, metal, bacteria, and pesticides that runoff into storm drains. As such, controlling pollutants in stormwater is a major challenge for BCWMG members. Through the BCWMG’s Enhanced Watershed Management Program, the City of Beverly Hills is addressing water quality issues in a comprehensive, quantitative manner, reducing bacteria levels, improving public health and beneficial uses of Ballona Creek and Estuary, leveraging sustainable green infrastructure practices while also providing a new source of freshwater to offset potable water demand.
The Delta is the heart of California’s statewide water delivery system (California State Water Project), representing the source of 30 percent of Southern California’s water supply. It’s where the state’s two largest rivers and their tributaries meet and mix with salt water from San Francisco Bay and the Pacific Ocean, forming a complex ecosystem.

Protecting water supply reliability from the state’s single largest supply, the Sierra snowpack, and enhancing protections for the environment are far reaching investments that provide benefits for generations to come.

Modernizing California’s Vulnerable, Outdated Water System

Modernizing the hub of the statewide water system is more critical now than ever. The Delta water system is outdated and unreliable. The system relies on levees that are vulnerable to earthquakes, floods and rising sea levels under climate change. And when these levees fail, water rushes into the lower-than-sea level islands behind them, pulling in salt water from the bay and diminishing water quality before it can be delivered to the Bay Area and Central Valley farmland and Southern California.

California WaterFix was proposed to improve the state’s water conveyance infrastructure by constructing new, state-of-the-art facilities that can secure more reliable water supplies, improve water quality, respond to climate change risks and protect ecosystem health.

Metropolitan made a decision to invest $10.8 billion, nearly 65 percent of the project cost, to allow for the construction of the full WaterFix project to modernize the state’s water delivery system as originally proposed and studied.

Realizing WaterFix: A New Portfolio Approach

Earlier this year, Governor Newsom directed public agencies funding California WaterFix to develop a portfolio approach to designing, constructing and financing the project, which replaces the proposed twin-tunnel WaterFix project with a single tunnel, smaller capacity solution.

Modernizing the Delta conveyance infrastructure paired with complementary projects that improve water recycling, recharge depleted groundwater reserves, strengthen existing levee protections and improve Delta water quality, is critical to building a resilient water supply for California’s communities and economy.

Here are five reasons why California WaterFix is necessary for Southern California:

- **The Big One**
 A new tunnel pipeline is a safeguard against a major earthquake collapsing Delta levees, which could shut off water deliveries to millions of people, farms and businesses.

- **Drought**
 Nearly all of the water that is stored in Southern California for drought and emergency needs comes either from Northern California or the Colorado River.

- **Groundwater**
 Groundwater is Southern California’s single largest local water source. Groundwater managers rely heavily on high quality water from the Delta to help replenish their basins.

- **Big Storms**
 A modernized system could capture enough water to refill reservoirs after big Sierra storms, providing flexibility and reducing conflicts with fish such as salmon.

- **More Local Supplies**
 Sierra snowmelt is pure enough to recycle again and again in Southern California, promoting more recycling projects in the region’s future.
The cornerstone of the Water Quality Report is a series of data tables that list the results of year-round monitoring for nearly 400 constituents.

Included in these tables are the levels of each constituent found in Beverly Hills’ water supply, how it compares with the allowable state and federal limits, and the constituent’s likely origin. Only the constituents that are found in Beverly Hills’ water supply that are above the state detection limit for reporting are listed in the tables.

You will find two tables, one for each of the following water sources:
- Metropolitan Treated Surface Water
- Beverly Hills Distribution System

By reading the tables on pages 16-20 from left to right, you will learn the quantity of a constituent found in water and how that compares with the allowable state and federal limits. You will also see the measured range and average of the constituent and where it likely originated. The questions and answers on this and the following page lettered A through I will explain the important elements of the tables.
residual, has an MRDL (maximum residual disinfectant level) instead of an MCL. The MRDL is the level of a disinfectant added for water treatment that may not be exceeded at the consumer’s tap. While disinfectants are necessary to kill harmful microbes, drinking water regulations protect against too much disinfectant being added. Another constituent, turbidity, has a requirement that 95 percent of the measurements taken must be below a certain number. Turbidity is a measure of the cloudiness of the water. Metropolitan monitors turbidity because it is a good indicator of the effectiveness of our filtration system.

Why are some of the constituents listed in the section labeled “Primary Standards” and others in the “Secondary Standards” section?

Constituents that are grouped in the “Primary Standards” section may be unhealthy at certain levels. In general, no health hazard is reasonably expected to occur when levels of a constituent are below a primary MCL. Constituents that are grouped under the “Secondary Standards” section can affect the appearance, taste and smell of water, but do not affect the safety of the water unless they also have a primary standard. Some constituents (e.g., aluminum) have two different MCLs, one for health-related impacts, and another for non-health-related impacts.

What are Public Health Goals (PHGs) and Maximum Contaminant Level Goals (MCLGs)?

PHGs and MCLGs are targets or goals set by regulatory agencies for the water industry. They define a constituent level in water that do not pose any known or expected risk to health. Often, it is not possible to remove or reduce constituents to the level of PHGs and MCLGs because it is technologically impossible or the cost for treatment is so expensive that it would make tap water unaffordable. That is why PHGs and MCLGs are considered goals to work toward, and not realistic standards that can be enforced. Similar goals exist for Maximum Residual Disinfectant Level Goals (MRDLG).
How do I know how much of a constituent is in my water and if it is at a level that is safe?

With a few exceptions, regulatory requirements are considered satisfied if the average amount of a constituent found in tap water over the course of a year is no greater than the MCL. Some constituents do have special rules described in the footnotes to the water quality tables. These constituents do not have a numerical MCL, but instead a required Treatment Technique that—when satisfied—is listed in the Treatment Plant Effluent (Column “H” of the Imported Water From Metropolitan table). The highest and very lowest levels measured over a year are shown in the range. Requirements for safety, appearance, taste and smell are based on the average levels recorded and not the range.

Water agencies have specific procedures to follow if a constituent is found at levels higher than the MCL and considered a potential threat to public health. Information is shared immediately with the regulatory agencies. The regulatory agencies will determine when and how this information is shared with the public.

What are the testing results for the water monitored?

The monitoring results for the two Metropolitan water treatment plants (Weymouth and Jensen) are listed as well as the monitoring results for the City’s water distribution system and lead and copper samplings from residential taps.

How do constituents get into the water supply?

The most likely source for each constituent is listed in the last column of the table. Some constituents are natural and come from the environment, others come from cities and farms, and some result from the water disinfection process itself. Some chemicals have found their way into California’s water supplies, making water treatment more difficult. Certain industrial processes—like dry cleaning, fireworks and rocket fuel manufacturing—have left constituents in the environment, as has the use of certain fertilizers and pesticides. Many of these chemicals have since been banned from use.
Glossary

Quality Standards

Primary Standards
Mandatory health-related standards that may cause health problems in drinking water. MCLs and MRDLs are listed for contaminants that affect health along with their monitoring, reporting, and water treatment requirements.

Secondary Standards
Aesthetic standards (non health-related) that could cause odor, taste, or appearance problems in drinking water.

Unregulated Contaminants
Information about contaminants that are monitored, but are not currently regulated by state and federal health agencies.

Terms & Abbreviations

Constituents
Components or elements found in drinking water.

Locational Running Annual Average (LRAA)
The highest LRAA is the highest of all Locational Running Annual Averages calculated as average of all samples collected within a 12-month period.

Maximum Contaminant Level (MCL)
The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG)
The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. EPA.

Maximum Residual Disinfectant Level (MRDL)
The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG)
The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Public Health Goal (PHG)
The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency (Cal/EPA).

Primary Drinking Water Standard (PDWS)
MCLs, MRDLs and treatment techniques (TTs) for contaminants that affect health, along with their monitoring and reporting requirements.

Range
Results based on minimum and maximum values; range and average values are the same for samples collected once or twice annually.

Regulatory Action Level (AL)
The concentration of a contaminant, which, if exceeded, triggers treatment or other requirements that a water system must follow.

Running Annual Average (RAA)
The highest RAA is the highest of all Running Annual Averages calculated as average of all samples collected within a 12-month period.

Treatment Technique (TT)
A required process intended to reduce the level of contaminants in drinking water that are difficult and sometimes impossible to measure directly.
Beverly Hills conducts extensive sampling and testing to ensure your water meets all water quality standards. In 2018, over 113 contaminants were evaluated at various sampling points throughout the City's water system, all of which were below state and federal maximum allowable levels. Most contaminants are measured in:

- Million fibers per liter (MFL)
- Parts per million (ppm) or milligrams per liter (mg/L)
- Parts per billion (ppb) or micrograms per liter (μg/L)
- Parts per trillion (ppt) or nanograms per liter (ng/L)
- Parts per quadrillion (ppq) or picograms per liter
- PicoCuries per liter (pCi/L) A measurement of radioactivity in water.
- MicroSiemen per centimeter (μS/cm) or Micromho per centimeter (μmho/cm)
- Nephelometric Turbidity Units (NTU)—A measurement of the clarity of water. Turbidity in excess of 5 NTU is noticeable to the average person.
Imported Water From Metropolitan Water District

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>State (Federal) MCL</th>
<th>PHG</th>
<th>State DLR (RL)</th>
<th>Range</th>
<th>Average</th>
<th>Treatment Plant Effluent ‡</th>
<th>Major Sources in Drinking Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent State Water Project</td>
<td>%</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>Range</td>
<td>Average</td>
<td>Jensen Plant: 100</td>
<td>Weymouth Plant: 0-100</td>
</tr>
</tbody>
</table>

PRIMARY STANDARDS—Mandatory Health-Related Standards

CLARITY

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>State (Federal) MCL</th>
<th>PHG</th>
<th>State DLR (RL)</th>
<th>Range</th>
<th>Average</th>
<th>MCLG</th>
<th>Highest</th>
<th>Median</th>
<th>% ≤ 0.3</th>
<th>Soil runoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined Filter Effluent (CFF) Turbidity (a)</td>
<td>NTU</td>
<td>TT</td>
<td>NA</td>
<td>NA</td>
<td>Highest</td>
<td>0.06</td>
<td>0.06</td>
<td></td>
<td>100</td>
<td>100</td>
<td>NA</td>
</tr>
</tbody>
</table>

MICROBIOLOGICAL (b)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>State (Federal) MCL</th>
<th>PHG</th>
<th>State DLR (RL)</th>
<th>Range</th>
<th>Average</th>
<th>MCLG</th>
<th>Highest</th>
<th>Median</th>
<th>% ≤ 0.3</th>
<th>Soil runoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Coliform Bacteria (c)</td>
<td>% Positive Monthly Samples</td>
<td>5.0</td>
<td>MCLG = 0</td>
<td>NA</td>
<td>Range</td>
<td>Average</td>
<td>NA</td>
<td>NA</td>
<td>Naturally present in the environment</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>State (Federal) MCL</th>
<th>PHG</th>
<th>State DLR (RL)</th>
<th>Range</th>
<th>Average</th>
<th>MCLG</th>
<th>Highest</th>
<th>Median</th>
<th>% ≤ 0.3</th>
<th>Soil runoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli (E. coli) (c, d)</td>
<td>Number</td>
<td>1</td>
<td>MCLG = 0</td>
<td>NA</td>
<td>Number of Positive Samples</td>
<td>NA</td>
<td>NA</td>
<td>Human and animal fecal waste</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>State (Federal) MCL</th>
<th>PHG</th>
<th>State DLR (RL)</th>
<th>Range</th>
<th>Average</th>
<th>MCLG</th>
<th>Highest</th>
<th>Median</th>
<th>% ≤ 0.3</th>
<th>Soil runoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heterotrophic Plate Count (HPC) Bacteria (e)</td>
<td>CFU/mL</td>
<td>TT</td>
<td>NA</td>
<td>(1)</td>
<td>Range</td>
<td>Median</td>
<td>ND</td>
<td>ND-1</td>
<td>Naturally present in the environment</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>State (Federal) MCL</th>
<th>PHG</th>
<th>State DLR (RL)</th>
<th>Range</th>
<th>Average</th>
<th>MCLG</th>
<th>Highest</th>
<th>Median</th>
<th>% ≤ 0.3</th>
<th>Soil runoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryptosporidium</td>
<td>oocysts/200 L</td>
<td>TT</td>
<td>MCLG = 0</td>
<td>(1)</td>
<td>Range</td>
<td>Average</td>
<td>ND</td>
<td>ND</td>
<td>Human and animal fecal waste</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>State (Federal) MCL</th>
<th>PHG</th>
<th>State DLR (RL)</th>
<th>Range</th>
<th>Average</th>
<th>MCLG</th>
<th>Highest</th>
<th>Median</th>
<th>% ≤ 0.3</th>
<th>Soil runoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Giardia (f)</td>
<td>cysts/200 L</td>
<td>TT</td>
<td>MCLG = 0</td>
<td>(1)</td>
<td>Range</td>
<td>Average</td>
<td>ND</td>
<td>ND</td>
<td>Human and animal fecal waste</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INORGANIC CHEMICALS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>State (Federal) MCL</th>
<th>PHG</th>
<th>State DLR (RL)</th>
<th>Range</th>
<th>Average</th>
<th>MCLG</th>
<th>Highest RAA</th>
<th>ND-75</th>
<th>ND-220</th>
<th>Residue from water treatment process; natural deposits erosion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>ppb</td>
<td>1,000</td>
<td>600</td>
<td>50</td>
<td>Range</td>
<td>ND-75</td>
<td>ND-220</td>
<td>Highest RAA</td>
<td>ND</td>
<td>105</td>
<td>Oil and metal refineries discharge; natural deposits erosion</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>State (Federal) MCL</th>
<th>PHG</th>
<th>State DLR (RL)</th>
<th>Range</th>
<th>Average</th>
<th>MCLG</th>
<th>Highest</th>
<th>Median</th>
<th>% ≤ 0.3</th>
<th>Soil runoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barium</td>
<td>ppb</td>
<td>1,000</td>
<td>2,000</td>
<td>100</td>
<td>Range</td>
<td>ND</td>
<td>118</td>
<td></td>
<td></td>
<td></td>
<td>Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>State (Federal) MCL</th>
<th>PHG</th>
<th>State DLR (RL)</th>
<th>Range</th>
<th>Average</th>
<th>MCLG</th>
<th>Highest</th>
<th>Median</th>
<th>% ≤ 0.3</th>
<th>Soil runoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluoride (k)</td>
<td>ppm</td>
<td>2.0</td>
<td>1</td>
<td>0.1</td>
<td>Range</td>
<td>0.4-0.8</td>
<td>0.6-0.9</td>
<td></td>
<td></td>
<td></td>
<td>Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>State (Federal) MCL</th>
<th>PHG</th>
<th>State DLR (RL)</th>
<th>Range</th>
<th>Average</th>
<th>MCLG</th>
<th>Highest</th>
<th>Median</th>
<th>% ≤ 0.3</th>
<th>Soil runoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrate (as Nitrogen)</td>
<td>ppm</td>
<td>10</td>
<td>10</td>
<td>0.4</td>
<td>Range</td>
<td>0.5</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
<td>Runoff and leaching from fertilizer use; septic tank and sewage; natural deposits erosion</td>
</tr>
</tbody>
</table>
Imported Water From Metropolitan Water District (cont.)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>State (Federal) MCL</th>
<th>PHG</th>
<th>State DLR (RL)</th>
<th>Range Average</th>
<th>Treatment Plant Effluent</th>
<th>Major Sources in Drinking Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>RADIOLOGICALS (I)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Jensen Plant</td>
<td>Weymouth Plant</td>
</tr>
<tr>
<td>Gross Alpha Particle Activity</td>
<td>pCi/L</td>
<td>15</td>
<td>MCLG = 0</td>
<td>3</td>
<td>Range 22</td>
<td>ND</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Uranium</td>
<td>pCi/L</td>
<td>20</td>
<td>0.43</td>
<td>1</td>
<td>Average ND</td>
<td>ND</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>DISINFECTION BYPRODUCTS, DISINFECTANT RESIDUALS, AND DISINFECTION BYPRODUCT PRECURSORS (m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Jensen Plant</td>
<td>Weymouth Plant</td>
</tr>
<tr>
<td>Total Trihalomethanes (TTHM) (Plant Core Locations and Distribution System)</td>
<td>ppb</td>
<td>80</td>
<td>NA</td>
<td>1.0</td>
<td>Range 11–28 21–30</td>
<td>Byproduct of drinking water chlorination</td>
<td></td>
</tr>
<tr>
<td>Sum of Five Haloacetic Acids (HAAS) (Plant Core Locations and Distribution System)</td>
<td>ppb</td>
<td>60</td>
<td>NA</td>
<td>1.0</td>
<td>Highest RAA 23 34</td>
<td>Byproduct of drinking water chlorination</td>
<td></td>
</tr>
<tr>
<td>Total Chlorine Residual</td>
<td>ppm</td>
<td>MRDL = 4.0</td>
<td>MRDL = 4.0</td>
<td>(0.05)</td>
<td>Range ND–4.4 ND–10</td>
<td>Byproduct of drinking water chlorination</td>
<td></td>
</tr>
<tr>
<td>Bromate (n)</td>
<td>ppb</td>
<td>10</td>
<td>0.1</td>
<td>1.0</td>
<td>Highest RAA 5.2 5.0</td>
<td>Byproduct of drinking water chlorination</td>
<td></td>
</tr>
<tr>
<td>Total Organic Carbon (TOC)</td>
<td>ppm</td>
<td>TT</td>
<td>NA</td>
<td>0.30</td>
<td>Range 2.0–2.6 2.1–2.8</td>
<td>Various natural and man-made sources; TOC is a precursor for the formation of disinfection byproducts</td>
<td></td>
</tr>
<tr>
<td>SECONDARY STANDARDS—Aesthetic Standards</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Jensen Plant</td>
<td>Weymouth Plant</td>
</tr>
<tr>
<td>Aluminum (a)</td>
<td>ppb</td>
<td>200</td>
<td>600</td>
<td>50</td>
<td>Range ND–75 ND–220</td>
<td>Residue from water treatment process; natural deposits erosion</td>
<td></td>
</tr>
<tr>
<td>Chloride</td>
<td>ppm</td>
<td>500</td>
<td>NA</td>
<td>(2)</td>
<td>Highest RAA ND 105</td>
<td>Runoff/leaching from natural deposits; seawater influence</td>
<td></td>
</tr>
<tr>
<td>Color</td>
<td>Color Units</td>
<td>15</td>
<td>NA</td>
<td>(1)</td>
<td>Range ND–1 ND–1</td>
<td>Naturally-occurring organic materials</td>
<td></td>
</tr>
<tr>
<td>Odor Threshold (p)</td>
<td>TON</td>
<td>3</td>
<td>NA</td>
<td>1</td>
<td>Average ND 3</td>
<td>Naturally-occurring organic materials</td>
<td></td>
</tr>
<tr>
<td>Specific Conductance</td>
<td>μS/cm</td>
<td>1,600</td>
<td>NA</td>
<td>NA</td>
<td>Range 428–444 897–1,010</td>
<td>Substances that form ions in water; seawater influence</td>
<td></td>
</tr>
<tr>
<td>Sulfate</td>
<td>ppm</td>
<td>500</td>
<td>NA</td>
<td>0.5</td>
<td>Average 436 954</td>
<td>Runoff/leaching from natural deposits; industrial wastes</td>
<td></td>
</tr>
<tr>
<td>Total Dissolved Solids (TDS) (q)</td>
<td>ppm</td>
<td>1,000</td>
<td>NA</td>
<td>(2)</td>
<td>Range 239–244 553–639</td>
<td>Runoff/leaching from natural deposits</td>
<td></td>
</tr>
</tbody>
</table>
OTHER MEASURES

GENERAL MINERALS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>State (Federal) MCL</th>
<th>PHG</th>
<th>Treatment Plant Effluent</th>
<th>Major Sources in Drinking Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkalinity (as CaCO₃)</td>
<td>ppm</td>
<td>NA</td>
<td>NA</td>
<td>Average 72</td>
<td>Runoff/leaching of natural deposits; carbonate, bicarbonate, hydroxide, and occasionally borate, silicate, and phosphate</td>
</tr>
<tr>
<td>Calcium</td>
<td>ppm</td>
<td>NA</td>
<td>NA</td>
<td>Average 20</td>
<td>Runoff/leaching from natural deposits</td>
</tr>
<tr>
<td>Hardness (as CaCO₃)</td>
<td>ppm</td>
<td>NA</td>
<td>NA</td>
<td>Average 89</td>
<td>Runoff/leaching from natural deposits; sum of polyvalentations, generally magnesium and calcium present in the water</td>
</tr>
<tr>
<td>Magnesium</td>
<td>ppm</td>
<td>NA</td>
<td>NA</td>
<td>Average 46</td>
<td>Runoff/leaching from natural deposits</td>
</tr>
<tr>
<td>Potassium</td>
<td>ppm</td>
<td>NA</td>
<td>NA</td>
<td>Average 50</td>
<td>Salt present in the water; naturally-occurring</td>
</tr>
<tr>
<td>Sodium</td>
<td>ppm</td>
<td>NA</td>
<td>NA</td>
<td>Average 1,000</td>
<td>Runoff/leaching from natural deposits; industrial wastes</td>
</tr>
</tbody>
</table>

UNREGULATED CONTAMINANTS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>State (Federal) MCL</th>
<th>PHG</th>
<th>Treatment Plant Effluent</th>
<th>Major Sources in Drinking Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boron</td>
<td>ppb</td>
<td>1,000</td>
<td>NA</td>
<td>100</td>
<td>Runoff/leaching of natural deposits; industrial wastes</td>
</tr>
<tr>
<td>Calcium Carbonate Precipitation Potential (CCPP) (as CaCO₃) (s)</td>
<td>ppm</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>Elemental balance in water; affected by temperature, other factors</td>
</tr>
<tr>
<td>Chlorate</td>
<td>ppb</td>
<td>800</td>
<td>NA</td>
<td>20</td>
<td>Byproduct of drinking water chlorination; industrial processes</td>
</tr>
<tr>
<td>Corrosivity (as Aggressiveness Index) (t)</td>
<td>AI</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>Elemental balance in water; affected by temperature, other factors</td>
</tr>
<tr>
<td>Corrosivity (as Saturation Index) (u)</td>
<td>SI</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>Elemental balance in water; affected by temperature, other factors</td>
</tr>
<tr>
<td>N-Nitrosodimethylamine (NDMA)</td>
<td>ppt</td>
<td>10</td>
<td>3</td>
<td>2.0</td>
<td>Byproduct of drinking water chlorination; industrial processes</td>
</tr>
<tr>
<td>pH</td>
<td>pH Units</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Sum of Five Haloacetic Acids (HAAS) (v)</td>
<td>ppb</td>
<td>60</td>
<td>NA</td>
<td>1.0</td>
<td>Byproduct of drinking water chlorination</td>
</tr>
<tr>
<td>Total Dissolved Solids (TDS) (w)</td>
<td>ppm</td>
<td>1,000</td>
<td>NA</td>
<td>(2)</td>
<td>Runoff/leaching from natural deposits</td>
</tr>
<tr>
<td>Total Trihalomethanes (TTHM) (v)</td>
<td>ppb</td>
<td>80</td>
<td>NA</td>
<td>1.0</td>
<td>Byproduct of drinking water chlorination</td>
</tr>
<tr>
<td>Parameter</td>
<td>Units</td>
<td>(Federal) MCL</td>
<td>PHG</td>
<td>State DLR (RL)</td>
<td>Range</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-------</td>
<td>---------------</td>
<td>-----</td>
<td>----------------</td>
<td>-------</td>
</tr>
<tr>
<td>Microbiological</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Coliform Bacteria</td>
<td>% Positive Monthly Samples</td>
<td>5.0</td>
<td>MCLG = 0</td>
<td>NA</td>
<td>Range 0.6–0.8</td>
</tr>
<tr>
<td>Escherichia coli (E. coli)</td>
<td>Number</td>
<td>1</td>
<td>MCLG = 0</td>
<td>NA</td>
<td>Number of Positive Samples 0</td>
</tr>
<tr>
<td>Inorganic Chemicals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoride</td>
<td>ppm</td>
<td>2.0</td>
<td>1</td>
<td>0.1</td>
<td>Range 0.6–0.8</td>
</tr>
<tr>
<td>Nitrate (as Nitrogen)</td>
<td>ppm</td>
<td>1</td>
<td>1</td>
<td>0.4</td>
<td>Range ND–0.203</td>
</tr>
<tr>
<td>Disinfection Byproducts, Disinfectant Residuals, and Disinfection Byproduct Precursors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Trihalomethanes (TTHM)</td>
<td>ppb</td>
<td>80</td>
<td>NA</td>
<td>1.0</td>
<td>Range 17.3–43.2</td>
</tr>
<tr>
<td>Sum of Five Haloacetic Acids (HAAS)</td>
<td>ppb</td>
<td>60</td>
<td>NA</td>
<td>1.0</td>
<td>Range 1.4–22.2</td>
</tr>
<tr>
<td>Total Chlorine Residual</td>
<td>ppm</td>
<td>MRDL = 4.0</td>
<td>MRDL = 4.0</td>
<td>(0.05)</td>
<td>Range 0.5–2.7</td>
</tr>
<tr>
<td>Secondary Standards—Aesthetic Standards</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Color</td>
<td>Color Units</td>
<td>15</td>
<td>NA</td>
<td>(1)</td>
<td>Range ND–3</td>
</tr>
<tr>
<td>Odor Threshold</td>
<td>TON</td>
<td>3</td>
<td>NA</td>
<td>1</td>
<td>Range ND</td>
</tr>
<tr>
<td>Turbidity</td>
<td>NTU</td>
<td>5</td>
<td>NA</td>
<td>0.1</td>
<td>Range ND–0.31</td>
</tr>
</tbody>
</table>

Definition of Terms

AI Aggressiveness Index
AL Action Level
Average Result based on arithmetic mean
CaCO3 Calcium Carbonate
CCPP Calcium Carbonate Precipitation Potential
CIE Combined Filter Effluent
CFU Colony-Forming Units
DLR Detection Limits for Purposes of Reporting
HAAS Sum of five haloacetic acids
HPC Heterotrophic Plate Count
LRAA Locational Running Annual Average; highest LRAA is the highest of all Locational Running Annual Averages calculated as an average of all samples collected within a 12-month period
MCL Maximum Contaminant Level
MCLG Maximum Contaminant Level Goal
MFL Million Fibers per Liter
MRDL Maximum Residual Disinfectant Level
MRDLG Maximum Residual Disinfectant Level Goal
NA Not Applicable
ND Not Detected at or above DLR or RL
NL Notification Level to SWRCB
NTU Nephelometric Turbidity Units
pCi/L picocuries per liter
ppp parts per billion or micrograms per liter (µg/L)
ppm parts per million or milligrams per liter (mg/L)
ppq parts per quadrillion or picograms per liter (pg/L)
The State allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, are more than one year old. In 2016, the City of Beverly Hills Water Utilities Bureau and City of Beverly Hills Unified School District voluntarily sampled for lead at all 5 public schools. In 2017, 32 residences were sampled for lead and copper at the tap. In 2017 and 2018, no K-12 public school submitted a request to sample for lead as part of Assembly Bill 746.

Notes

(a) Metropolitan monitors turbidity at the CFE locations using continuous and grab samples. Turbidity, a measure of cloudiness of the water, is an indicator of treatment performance. Turbidity was in compliance with the TT primary drinking water standard and the secondary drinking water standard of less than 5 NTU.

(b) Per the State’s Surface Water Treatment Rule, treatment techniques that remove or inactivate Giardia cysts will also remove HPCs, Legionella, and viruses. Legionella and virus monitoring is not required.

(c) Compliance is based on monthly samples from treatment plant effluents and the distribution system.

(d) The MCL for E. coli is based on routine and repeat samples that are total coliform-positive, and either is E. coli positive or the system fails to take repeat samples following an E. coli-positive routine sample, or the system fails to analyze a total coliform-positive repeat sample for E. coli.

(e) All distribution system samples had detectable total chlorine residuals, so no HPC was required. Metropolitan monitors HPCs to ensure treatment process efficacy.

(f) A single Giardia cyst was detected in one sample from the filter effluent at the Skinner water treatment plant, prior to the treated water reservoir and addition of final disinfectant. The monitoring method detects all cysts, regardless of whether they are alive or dead. The plant met all operational and regulatory requirements throughout the year, including at the time of this single sampling event, and there was no regulatory violation.

(g) 1,2,3-Trichloropropane (TCP) was monitored quarterly in Metropolitan’s source and treated waters for the State initial monitoring requirement promulgated in January 2018. Metropolitan will begin annual monitoring in 2019.

(h) Metropolitan uses acrylamide for water treatment processes and was in compliance with the treatment technique requirements regarding its use when treating drinking water. Metropolitan does not use any epichlorohydrins.

(i) Data reported once every nine-year compliance cycle until the next samples are collected. Current monitoring results are from 2011.

(j) As a wholesaler, Metropolitan has no retail customers and is not required to collect samples at consumers’ taps. However, compliance monitoring under Title 22 is required at plant effluents.

(k) Metropolitan was in compliance with all provisions of the State’s fluoridation system requirements.

(l) Data are from samples collected in 2017. Metropolitan’s required triennial monitoring (2020–2022) will be performed in 2020.

(m) Compliance with the state and federal MCLs is based on RAA or LRRA, as appropriate. Plant core locations for TTHM and HAAS are service connections specific to each of the treatment plant effluents.

(n) Compliance with the state and federal bromate MCL is based on RAA. No MCL exceedance occurred in the Mills or Weymouth treatment plant effluents.

(o) Compliance with the State MCL for aluminum is based on RAA. No secondary standard MCL exceedance occurred in the Diemer or Weymouth treatment plant effluents.

(p) Compliance with odor threshold secondary MCL is based on RAA. Treatment plants begin quarterly monitoring if annual monitoring results are above 3.

(q) Metropolitan’s TDS compliance data are based on flow-weighted monthly composite samples collected twice per year (April and October). The 12-month statistical summary of flow-weighted data is reported in the “Other Parameters” section under “Miscellaneous.”

(r) Data are from voluntary monitoring of constituents and are provided for informational purposes.

(s) Positive CCP = non-corrosive; tendency to precipitate and/or deposit scale on pipes. Negative CCP = corrosive; tendency to dissolve calcium carbonate. Reference: Standard Methods (SM2330).

(t) Al ≥ 12.0 = Non-aggressive; Al ≤ 10.0–11.9 = Moderately aggressive; Al ≤ 10.0 = Highly aggressive water. Reference: ANSI/AWWA Standard C400-93 (R98).

(u) Positive SI = non-corrosive; tendency to precipitate and/or deposit scale on pipes. Negative SI = corrosive; tendency to dissolve calcium carbonate. Reference: Standard Methods (SM2330).

(v) HAAS and TTHM noncompliance samples collected at treatment plant effluents.

(w) Statistical summary represents 12 months of flow-weighted data and values may be different than the TDS reported to meet compliance with secondary drinking water regulations.
A series of cold-weather storms have brought a rare, wet winter to California. While the state’s reservoirs are presently full and snowpack is ample, we never know what tomorrow will bring. This is why we must all work together to make water efficiency a Beverly Hills way of life. The City is doing its part to conserve water by practicing efficient water measures throughout the City’s offices and public venues. Join us in taking a greater role in water stewardship and conservation by practicing these easy ways you can save water in and outside your home.

Water Saving Tips: Indoors
- Check for leaks around the house, especially running toilets. One running toilet can waste 200 gallons an hour!
- Take five minute (or less) showers.
- Use a low-flow showerhead and/or install aerators in your sinks. The City offers these devices at no cost by calling 310.285.2467.
- Do not run water when brushing your teeth, shaving and washing dishes by hand.
- Wash only full loads of laundry and dishes. Check out rebates for eligible appliances by visiting www.socalwatersmart.com.

Water Saving Tips: Outdoors
- Set your sprinkler timer to water 2 days a week in the Fall, Winter and Spring and 3 days a week in the Summer (see our Outdoor Watering Guidelines).
- Check your sprinkler system for broken or clogged sprinkler heads. To minimize water waste, check for overspray.
- Consider drip irrigation for your trees, shrubs and flowers.
- Use a broom, not a hose, to clean driveways and sidewalks.
- Install a weather-based irrigation controller (WBIC), which will automatically adjust the watering schedule with the weather.
- Put a back-up battery in your sprinkler controller to save your settings during power outages.
- Use at least 3 inches of mulch around plants and trees to retain moisture and keep the soil cool.
- Consider replacing grass lawn areas with drought tolerant and native plants that require less water (rebates may be available).
- Use a pool cover to reduce evaporation. You may also save money on heating bills and chemicals.
- Keep an eye on pool and fountain auto fills so they only fill when necessary.

Outdoor Watering Guidelines
While California’s Emergency Drought is over, we encourage all residents to continue using water efficiently, which is why “Stage C” of Beverly Hill’s watering regulations is still in place:

From October to May, outdoor watering is restricted to two (2) days per week.
- **North of Santa Monica Boulevard**
 - Monday & Friday
- **South of Santa Monica Boulevard**
 - Tuesday & Saturday

From June to September, outdoor watering is restricted to three (3) days per week.
- **North of Santa Monica Boulevard**
 - Monday, Wednesday & Friday
- **South of Santa Monica Boulevard**
 - Tuesday, Thursday & Saturday

Ongoing Regulations
1. Only water between the hours of 5 pm and 9 am.
2. Don’t irrigate after a measurable rainfall.
3. Don’t allow excessive water runoff due to sprinkler overspray or malfunction.
4. Repair leaks immediately.
Do you know how much water goes into your landscape?

A typical, single family home uses two-thirds of their total water consumption to water their outdoor landscape. In an effort to help our customers use water more efficiently and reduce their water bills, the City offers free landscape water evaluations. The evaluation focuses on the most efficient way to water your landscape and offers other helpful information, including the pros and cons of drip irrigation versus overhead sprinklers. Information on beautiful water wise plants will also be available for those considering upgrading to a California Friendly landscape.

To sign up, please contact Debby Figoni at 310.285.2467 or via email: AskPW@beverlyhills.org.

Rebates, Tips, Questions

Rebates are available for upgrading to high-efficiency appliances including toilets, clothes washers, weather based irrigation controllers and more. For a list of eligible appliances and details on the rebates, visit www.socalwatersmart.com.

For more water-saving tips and resources, visit www.epa.gov/watersense and www.BHSaves.org.

You can also contact Debby Figoni at 310.285.2467 or AskPW@beverlyhills.org.
Did you know that one leaky toilet can waste up to 200 gallons of water an hour? And, a broken sprinkler pipe can waste even more? Many water leaks are not visible and can go undetected for months. Not only is this wasteful, it adds unnecessary costs to your utility bill.

The City of Beverly Hills has taken a proactive approach to help our customers detect continuous water flow issues soon after they start with an online program called Water Tracker. Proven to save our customers water, time and money, this free City program displays daily water use and will notify you of abnormally high daily usage and/or continuous water flow issues.

Signing up for the Water Tracker program is easy:

1. Visit https://water.beverlyhills.org and click on “Sign Up Here.” Enter your email address and hit “submit.” You will receive a confirmation email with a link to activate your account.

2. Sign into Water Tracker using your login email address and newly created password. Enter your 6-digit customer number on your water bill to link up your account. Note: If your customer number is less than 6 digits, add “0” to the beginning of your customer number.

3. Re-enter your login and password to finish setting up your account. Then, click “My Water Use” to start exploring water usage statics by year, month, week, day or hour (on left side of screen). You can also view your water usage summary per billing cycle on the tab labeled “Consumption Summary.”

One of the most valuable features of this program are the automated alerts of potential leaks and excessive water use. You can set up your notifications under “Account Settings,” where you can select your preferred options (frequency, email vs. text notifications, etc.) Under “Water Settings,” you can set your “usage budget” and other parameters such as “Continuous Flow Threshold,” which should be set at “0” to be notified of potential leaks.

In addition to this valuable tool, a simple visual inspection around your home is an easy way to spot leaks. Taking 10 minutes to check your home for leaks today could save hundreds to thousands of gallons of water.

Toilets

Did you know that one leaky toilet can waste up to 200 gallons of water an hour?

To see if your toilet is running, put a few drops of food coloring in the toilet tank. Don’t flush and wait 15 minutes. If the colored water appears in the bowl, there is a leak. The issue may be:

- Flapper: Ensure it is sealing properly. New flappers are inexpensive and easy to fix.
- Overflow Tube: Water should be a half inch below the top of the tube.
- Lift Chain: It should not catch on anything.
- Flush Handle: Make sure it functions properly.

Note: Rebates for 1.1 gallon per flush toilets are available by visiting: www.socalwatersmart.com.

Faucets, Showerheads and Bathtubs

Look for dripping faucets and showerheads. Leaky faucets and showerheads are often caused by worn out washers. Replacing worn washers in a faucet with a slow steady drip saves 350 gallons per month, and 2,000 gallons a month if the leak is a small stream.
About two o’clock in the morning, when everyone is fast asleep, field operators from the Public Works Department, drive to all the reservoirs and 21 stations located throughout Beverly Hills to sample water at every point of the City’s distribution system. The samples are then submitted to the laboratory to test for more than 113 constituents in the water delivered to Beverly Hills residents.

The laboratory results and water quality data are then analyzed by Water Quality Specialist Jason Dyogi. But that is just the beginning. Jason also monitors data from the City’s water treatment plant, makes recommendations to maintain the highest quality water, and proposes ways to improve the City’s water infrastructure. He stays abreast of new laws impacting water quality, develops contingency plans and ensures the City has the appropriate certified laboratories to test for emerging contaminants. He is also responsible for all regulatory compliance reports, which are filed monthly, quarterly and annually, such as this Consumer Confidence Report (CCR), as well as the State Annual Drinking Water Program Performance Report and the Public Health Goals Report to City Council to receive public comment and to accept any recommendations from the report.

Jason Dyogi joined the City of Beverly Hills Water Quality team in November 2018 after serving as Water Quality Analyst for the City of Santa Monica and Golden State Water Company, one of the largest privately owned water companies in California, totaling over 10 years of water quality experience. He holds a Bachelor of Science degree in Biology as well as several specialized drinking water certifications with the State of California and the American Water Works Association.

In his role as Water Quality Specialist, Jason also spends time speaking to Beverly Hills residents and answering their questions about water quality. Following are some of the most commonly asked questions he receives.

Is my tap water safe to drink?

Yes, your tap water is safe to drink. The United States enjoys one of the best supplies of drinking water in the world. Most people don’t realize that their tap water is regulated by the U.S. EPA under the Safe Drinking Water Act. Under this Act, the EPA requires water utility providers, such as the City of Beverly Hills, to regularly test the water from various locations throughout the City to ensure it does not exceed the maximum levels for a variety of different contaminants. In addition to ongoing monitoring and rigorous testing, our City is required to provide residents with an annual Consumer Confidence Report, which includes a detailed table about the quality of your water such as the ones found in this report.

How does your water stack up against bottled water?

Bottled water is not necessarily any safer to drink than your tap water. In fact, much of bottled water comes from municipal water systems. Bottled water is considered a packaged product that is regulated by Food and Drug Administration (FDA). Even though the bottle water industries have to adhere to quality standards, the FDA’s water quality testing requirements are far less stringent than the standards we meet. Monitoring is also less frequent than your tap water. Furthermore, the FDA does not require water bottling companies to share their test results to consumers like the results we provide to our customers. Bottled water also creates a tremendous amount of plastic, which leaves a big environmental footprint. Then there is the consideration of cost. The price you pay for a gallon of water at your tap is considerably less than the price of a gallon of bottled water.

Why do I see a white residue at the bottom of my tea kettle or spotting on my glassware?

This residue is a harmless buildup of naturally occurring minerals in water—primarily calcium and magnesium, the most common minerals that make water “hard.” To remove the deposits inside your tea kettle, boil equal parts white vinegar and water. Once a month, fill the reservoir with equal parts white vinegar and water, and turn on the coffeemaker.

Is “hard water” safe to drink?

Yes, your tap water is safe to drink. These minerals do not pose any health risks. In fact, the National Research Council (National Academy of Sciences) states that hard drinking water generally contributes a small amount toward total calcium and magnesium human dietary needs. Since hard water contains essential minerals, it is often the preferred drinking water over distilled or “soft” water. Not only because of the health benefits, but also the flavor. The City of Beverly Hills conducts various tests throughout the system to ensure safe levels of hardness in your water.
We are proud of our stewardship of Beverly Hills’ infrastructure and we put your dollars to work in the most efficient way to maintain our great City.

Securing new alternative water sources, improving our infrastructure and implementing new services comes at a cost. However, we continue to make strategic investments in our water and sewer infrastructure, striving to better leverage City resources, improve efficiencies, and reduce overall construction costs and time to maximize your dollars.

“We put your dollars to work to ensure we are able to meet your water needs today and far into the future,” explains Assistant Director Gil Borboa. “As your Public Works Department, one of our top priorities is to ensure high quality water, a more resilient water system and long-term sustainability that protects health, safety and quality of life for all Beverly Hills residents and businesses. We are constantly reinvesting in our infrastructure, whether building new facilities to access new groundwater sources or replacing and reinvigorating the systems all our customers depend on every day.”

Our Capital Improvement Program (CIP) projects exemplify our stewardship of Beverly Hills’ infrastructure. Through these projects, we are modernizing and improving the reliability of our water system while pursuing alternative local sources of water supply including new groundwater sources. Leading these projects is a proposal to develop 1,700 net acre-feet per year (AFY) of new potable water supply in the La Brea Subarea of the Central Groundwater Basin, located at various sites south of the City near the I-10 freeway and La Cienega Boulevard. The major project components include:

- Constructing and equipping three new groundwater wells.
- Transporting groundwater to the treatment plant through a pipeline conveyance system, which includes the potential rehabilitation of an existing pipeline and the construction of a new pipeline from the intersection of La Cienega Boulevard and Olympic Boulevard to the Foothill Water Treatment Plant. Currently, this project is in planning and design. Construction of the conveyance piping system and one of the three groundwater wells is anticipated to be completed in FY 2020/2021.

Other water system upgrade projects in the works that will enhance the robustness of our water system include:

- Upgrades to the City’s existing Reverse Osmosis Water Treatment Plant to address changing water quality conditions in the City’s Hollywood Basin groundwater wells. Upgrades will include a pretreatment system with oxidation unit, sand separator, and chemical feed systems to continue to treat our groundwater supplies to meet stringent regulatory requirements. The water treatment plant upgrades are anticipated to be completed in first quarter 2021.
- Pump Station No. 8 Rehabilitation Project to replace aging mechanical pumping equipment, electrical, instrumentation controls, piping, and associated appurtenances at the existing pump station adjacent to Reservoir No. 7. Completion of construction is projected for Summer 2019.
- Various Distribution and Transmission Pipeline Upgrades and Improvements Project on Coldwater Canyon, Loma Linda, Loma Vista, and other areas within our water system. This project will replace about five miles of aging pipeline infrastructure to ensure a reliable conveyance system. Currently under design, construction on this project is projected to begin in 2020.
- Pump Station 4 and Sunset Reservoir Improvement Project to upgrade aging pump station piping and instrumentation, enhance chemical feed systems, and improve pump station operability is underway. Currently, the project is in design with construction anticipated to begin in FY 2020/2021.
- Integrated Water Resources Master Plan (IWRMP) to determine best available use of the City’s water resources including water, wastewater, and storm water resources. This project will update the City’s hydraulic models and develop a planning roadmap for the City to optimize the use of these limited water resources. Currently, the project is underway and completion of the master plan is anticipated in FY 2020/2021.

Our goal is to be innovative, proactive, and efficient. But Public Works can’t do it alone. We encourage you to participate by letting us know what we can do better.

Together we can ensure a sustainable future for all Beverly Hills water customers.
The historic Cactus Garden in Beverly Gardens Park
Get Involved

Public involvement is fundamental to ensuring that we are meeting water supply demand, water quality goals and the highest customer service level. We welcome your feedback; please see below for ways you can be involved with the City of Beverly Hills:

• Let us know how we are doing.
• Sign up for the newsletters and alerts.
• Participate in conservation events.
• Attend commission and council meetings.

The Public Works Commission is an advisory group to the City Council that generally meets at 8:00 a.m. on the second Thursday of every month. For exact meeting dates and time, please contact the City Clerk at 310.285.2400.

For more information visit
http://www.beverlyhills.org/