3.8 CIRCULATION

This section provides a comprehensive overview of existing transportation facilities and conditions throughout the City of Beverly Hills, including the impact of the City’s geographic position in the regional transportation system. It describes existing streets and highways, traffic operating conditions, parking facilities, public transit services available, designated truck routes and other transportation facilities and programs in the City. The description of the City’s transportation infrastructure also touches upon related challenges that the city faces as a result of both regional and citywide growth. A summary of these challenges is provided in the last section of the document.

Regional Transportation Setting

The City of Beverly Hills, as part of the Westside cities that include Culver City, Los Angeles, Santa Monica, and West Hollywood, anticipates continued growth due to regional employment and shopping as well as growth in population. The City of Beverly Hills is located along the densely developed Wilshire Corridor and is regionally placed in the middle of a variety of regional traffic generators that include Westwood, the University of California, Los Angeles (UCLA), Century City, Los Angeles International Airport (LAX), and Culver City to the west and West Hollywood, the Wilshire Miracle Mile, and downtown Los Angeles to the east, and even the San Fernando Valley to the north. There are only two major facilities that provide regional transportation service for through traffic to bypass the City of Beverly Hills: the I-405 freeway in the north-south direction and the I-10 freeway in the east-west direction. This lack of adequate regional transportation capacity on the Westside results in the use of many of the roadways in the city being used by through traffic to get to and from the various activity centers in the area. This discussion of the regional setting serves as the logical background for the discussion of the existing circulation system in the City of Beverly Hills.

Regional Through Traffic

Regional through traffic can be defined as traffic that neither originates nor is destined for a location within the city. As discussed above, the City of Beverly Hills is not directly served by any of the freeways in the region. Given the nature of the land uses in the area and the regional highway system that serves it, the impact is on traffic without an origin or destination within the City of Beverly Hills. The travel path for much of this traffic is such that it is not served by one of the freeways in the region, resulting in a large volume of through traffic using the city’s east/west arterial roadways and even some of its north/south streets. Through traffic between the city and the San Fernando Valley uses the canyon routes on the northern edge of the city, disrupting these neighborhoods by using streets originally designed as local streets and not expected to carry these higher traffic volumes. Figure 3.8-1 illustrates the streets that carry regional through traffic in the City of Beverly Hills.
A major regional through route in the City of Beverly Hills is Wilshire Boulevard. Wilshire Boulevard serves as one of the major east/west arterials that provides service between downtown Los Angeles and the 405 Freeway and areas to the west. Wilshire Boulevard also serves as the primary means of both regional and local access to the city’s Business Triangle. As a result, traffic issues on Wilshire Boulevard within the City of Beverly Hills are particularly difficult to address because of its mixture of regional through traffic and locally generated commercial traffic. Both must be accommodated or reduced if traffic flows are to be improved.

Another major regional through street is North Santa Monica Boulevard. This roadway is State Route 2 and as such, Beverly Hills will not have the ability to make roadway, signal or other improvements until Caltrans relinquishes the right-of-way, as it has done in Los Angeles to the west and West Hollywood to the east. The relinquishment is anticipated to occur in the near future. The street carries regional traffic from the Cahuenga Pass and Hollywood through West Hollywood to major employment centers in Beverly Hills, Century City in West Los Angeles, and points west to the 405 Freeway. It picks up additional east/west traffic in Beverly Hills where it is joined by Beverly Boulevard. Traffic flow is significantly slowed by the existence of closely spaced signalized intersections with the north/south streets of the Business Triangle, which in turn carry some of the north/south commuter traffic through the northern residential areas from the San Fernando Valley. Running down the middle of a parallel set of north and south roadways of Santa Monica Boulevard in both West Hollywood and Los Angeles is a former Southern Pacific Railroad right-of-way, now abandoned, and now incorporated into the roadway improvements that have been completed or are under construction in those cities. In Beverly Hills, the south roadway of Santa Monica Boulevard parallels the north roadway adjacent to the Business District, but unlike Los Angeles and West Hollywood, the area between them has a narrow strip of private commercial development as well as the former railroad right-of-way. Some of the former railroad right-of-way parcels are privately owned and there is interest in commercial development of the parcels combined with the adjacent strip of commercial property. The north and south roadways begin to diverge at North Beverly Drive until the south roadway becomes Burton Way. Another significant feature of Santa Monica Boulevard is the congested double-roadway intersection with Wilshire Boulevard at the western corner of the Business Triangle.

Just west of the City of Beverly Hills, Santa Monica Boulevard is under construction to combine the north and south roadways and the former railroad right-of-way to form one roadway: Santa Monica Boulevard Transit Parkway. Street geometrics, lane striping and signage will provide a transition just west of the Beverly Hills city border that preserves the existing Beverly Hills street configuration, however, the geometrics provide the opportunity for future reconfiguration of the north and south roadways of Santa Monica Boulevard in Beverly Hills as part of an overall strategy for improving traffic flows along the Santa Monica Boulevard corridor. Efforts have been made to provide Intelligent Transportation System (ITS) applications along Wilshire, Olympic and Sunset
Boulevards, coordinated with similar systems in Los Angeles, to reduce delays and facilitate better and safer traffic flow.

Intelligent Traffic System (ITS)

ITS helps improve transportation safety and mobility and enhance productivity through the use of advanced communications technologies. Intelligent transportation systems encompass a broad range of wireless and wire line communications-based information and electronic technologies. When integrated into the transportation system’s infrastructure, and in vehicles themselves, these technologies relieve congestion, improve safety and enhance productivity.

The ITS improvements are also consistent with the need to protect residential neighborhoods from intrusion by regional and other non-local traffic by encouraging motorists to remain on the primary arterials.

Functional Usage of City Streets

This section describes the physical characteristics, functional usage, corresponding classification of City streets, existing traffic conditions throughout the City, and other aspects of the system that affect its operation.

The vehicular circulation system in the City of Beverly Hills includes a wide network of surface streets. The street system serves two distinct and equally important functions: providing access to adjacent properties and movement of persons and goods through the City and into the surrounding area.

A functional classification system provides a hierarchical framework for the design and operation of the street system. Generally, streets designed to carry large volumes of vehicles into and through a city have more lanes, higher speed limits, and fewer driveways. Local streets have fewer lanes, lower speed limits, and more driveways providing access to fronting properties. Traffic flow patterns and volumes today are very different from when the City’s street system was laid out in 1907. Consequently, as is the case elsewhere in the Los Angeles area, many streets today do not serve the traffic purpose for which they were originally intended and do not exhibit all the characteristics associated with typical street classification systems. Figure 3.8-2 illustrates the average daily traffic (ADT) volumes on various City streets, which is generally a good indicator of functional usage of the street in relation to its classification.

The Beverly Hills roadway system today serves four functional street types: principal arterial, minor arterial, collector, and local. Figure 3.8-3 displays the current street network and functional classification of street system.
AVERAGE DAILY TRAFFIC VOLUMES ON CITY STREETS

Source: KAKU Associates, 2005

N:\GISProjects\Beverly_Hills_GPU_10600\Basemap.mxd

Figure 3.8-2
Principal Arterial Streets are streets that serve the major centers of activity of a metropolitan area, carrying the highest traffic volumes and the longest trips, usually carrying a high proportion of the total urban area trips in the shortest distance. Principal arterials carry the major portion of trips entering and leaving the urban area, as well as the majority of through movements desiring to bypass the central city. They usually provide four to six lanes, plus left-turn lanes at key intersections. Some principal arterials do not have exclusive left-turn lanes due to narrow rights-of-way and the need to provide on-street parking near intersections. The concept of service to abutting land is usually subordinate to the provision of travel service to major traffic movements and service to adjacent commercial land uses should be purely incidental to the primary functional responsibility of these streets. The principal arterials each have average daily traffic of 30,000 or more, with Olympic Boulevard being the highest with a volume of 53,000 vehicles per day (vpd) within the city. The principal arterial streets serving the City of Beverly Hills are as follows:

- Wilshire Boulevard
- North Santa Monica Boulevard
- Sunset Boulevard
- Olympic Boulevard
- La Cienega Boulevard
- Beverly Boulevard
- Burton Way

Minor arterial streets are defined as streets that interconnect with and augment the principal arterial streets and provide service to trips of moderate length at a somewhat lower level of travel mobility than principal arterials. Minor arterials place more emphasis on land access than principal arterials. They usually provide four lanes, plus left-turn lanes at key intersections. Some minor arterials do not have exclusive left-turn lanes due to narrow rights-of-way and the need to provide on-street parking near intersections. The minor arterials serving the city are as follows:

- South Santa Monica Boulevard (west of Wilshire Boulevard)
- Beverly Drive (between Whitworth Drive and Santa Monica Boulevard)
- Robertson Boulevard

The average daily traffic on the minor arterial streets is less than 30,000 vpd except for Robertson Boulevard, which carries approximately 29,400 vehicles, close to the functional usage of a principal arterial.

Collector Streets are defined as streets that provide land access service and traffic circulation within residential neighborhoods, commercial and industrial areas. Collector Streets penetrate residential neighborhoods, distributing trips from the arterials through the area to the ultimate destination. They usually collect traffic from local streets in residential neighborhoods and channel it into the arterial system. Certain collector streets, such as those with fronting commercial development, high-density multifamily units or extra-wide widths may experience higher traffic volumes, while those with narrower widths or low-density residential or schools as adjacent land uses may experience lower volumes. The collector streets in the City of Beverly Hills are as follows:
CITY of BEVERLY HILLS
General Plan

FUNCTIONAL USAGE OF STREETS

LEGEND:

- Principal Arterials
- Minor Arterials
- Collector Streets
- Local Streets
- Los Angeles/West Hollywood City Limits
- Beverly Hills City Limits

Source: KAKU Associates, 2005

N:\GISProjects\Beverly_Hills_GPU_10600\Basemap.mxd

Figure 3.8-3
- Coldwater Canyon Drive (north of Sunset Boulevard)
- Benedict Canyon Drive (north of Sunset Boulevard)
- Beverwil Drive (between Whitworth Drive and Beverly Drive)
- Doheny Drive (between Whitworth Drive and Burton Way)

Local Streets

Local Streets are defined as streets that primarily provide access to adjacent land uses. Local streets provide service over relatively short distances as compared to collector streets. They allow access to residential driveways and often provide parking for the neighborhood. They are not intended to serve through traffic traveling from one neighborhood to another, but solely to serve local traffic. In addition to these street types, alleys are located at many mid-block locations throughout the City and provide access to adjacent properties.

All public streets in Beverly Hills that are not designated as arterials, minor arterials, or collectors are considered local streets. Appendix A1 provides a list of City streets with their respective functional classifications. Traffic is controlled at the intersection of any two or more streets with a program of traffic signals and stop signs. Traffic signals, which are the traffic control devices used at those locations where the volumes are sufficiently high to warrant their installation, help provide for a systematic and organized flow of traffic throughout the City, providing safety and order for pedestrians and vehicles using City streets. Figure 3.8-4 shows the location of signalized intersections in the City of Beverly Hills. The City also uses stop signs to control many of its intersecting local or residential streets. Stop signs, like traffic signals, assign right-of-way at an intersection so that traffic flows smoothly and predictably. A combination of two-way and four-way stop signs are used to control two intersecting local streets, to check the local street traffic intersection with major streets, for traffic calming purposes in residential areas, and for special conditions such as hills and curves.

Evaluation of Existing Circulation System

The following provides a summary of the evaluation of the circulation system that currently serves the City of Beverly Hills. The concepts of level of service and roadway capacity are defined, followed by a description of the methodology used to analyze traffic and its operating conditions in the City by employing these concepts.

Level of Service

Level of service (LOS) is a concept used to evaluate the operating conditions of the flow of traffic on a street segment or through an intersection based on the volume of traffic that uses the facility as compared to the facility’s capacity. LOS categories range from excellent, nearly free-flow traffic at LOS A to overloaded, stop-and-go conditions at LOS F. The level of service definitions are provided in Table 3.8-1. It should be noted that the LOS definitions shown in the table represent average conditions for all vehicles at an intersection across a one-hour period. The table provides the relationship between the volume/capacity ratio for the intersection and its associated level of service.
LOCATION OF SIGNALIZED INTERSECTIONS

LEGEND:
- Signalized Intersection
- Mid-Block Pedestrian Signal
- Los Angeles/West Hollywood City Limits
- Beverly Hills City Limits

Source: KAKU Associates, 2005

Figure 3.8-4
Table 3.8-1 Level of Service Definitions for Signalized Intersections

<table>
<thead>
<tr>
<th>Level of Service</th>
<th>Intersection Capacity Utilization</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.000–0.600</td>
<td>EXCELLENT. No Vehicle waits longer than one red light and no approach phase is fully used.</td>
</tr>
<tr>
<td>B</td>
<td>0.601–0.700</td>
<td>VERY GOOD. An occasional approach phase is fully utilized; many drivers begin to feel somewhat restricted within groups of vehicles.</td>
</tr>
<tr>
<td>C</td>
<td>0.701–0.800</td>
<td>GOOD. Occasionally drivers may have to wait through more than one red light; backups may develop behind turning vehicles.</td>
</tr>
<tr>
<td>D</td>
<td>0.801–0.900</td>
<td>FAIR. Delays may be substantial during portions of the rush hours, but enough lower volume periods occur to permit clearing of developing lines, preventing excessive backups.</td>
</tr>
<tr>
<td>E</td>
<td>0.901–1.000</td>
<td>POOR. Represents the most vehicles intersection approaches can accommodate; may be long lines of waiting vehicles through several signal cycles.</td>
</tr>
<tr>
<td>F</td>
<td>> 1.000</td>
<td>FAILURE. Backups from nearby locations or on cross streets may restrict or prevent movement of vehicles out of the intersection approaches. Tremendous delays with continuously increasing queue lengths.</td>
</tr>
</tbody>
</table>

SOURCE: Transportation Research Board, Highway Capacity Manual, Special Report 209, 1994

Traffic Counts

Traffic counts have been conducted on the street system throughout the City to assess current usage of the system. Machine counts are used to provide an indication of the daily 24-hour volumes for each of these facilities. As indicated and discussed above, the 24-hour daily traffic counts are primarily used to support the roadway classifications for each roadway in the City. Manual traffic counts are taken for shorter periods (e.g., morning and afternoon peak periods on weekdays) at intersections. Such counts include the number of vehicles making each movement at an intersection (i.e., number of northbound left, through and right movements, number of southbound left, through and right movements, etc.). Manual intersection counts arranged by the City were conducted at thirty-five key intersection locations within the City during the weekday peak traffic periods of 7:00 to 9:00 A.M., 11:30 A.M. to 1:30 P.M., 4:00 to 6:00 P.M. and the Saturday peak traffic period of 11:30 A.M. to 1:30 P.M. Counts are from 11:30 A.M. to 1:30 P.M., when traffic levels are typically highest and most representative of peak operations. Table 3.8-2 lists the thirty-five key intersections selected for this analysis and Figure 3.8-5 illustrates the location of these intersections within the City.
<table>
<thead>
<tr>
<th>Int. No.</th>
<th>North/South Street</th>
<th>East/West Street</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Benedict Cañon/Cañon/Rodeo Drive</td>
<td>Sunset Boulevard</td>
</tr>
<tr>
<td>2</td>
<td>Beverly Drive/Coldwater Canyon/Crescent Drive</td>
<td>Sunset Boulevard</td>
</tr>
<tr>
<td>3</td>
<td>Whittier Drive</td>
<td>Wilshire Boulevard</td>
</tr>
<tr>
<td>4</td>
<td>North Santa Monica Boulevard</td>
<td>Wilshire Boulevard</td>
</tr>
<tr>
<td>5</td>
<td>South Santa Monica Boulevard</td>
<td>Wilshire Boulevard</td>
</tr>
<tr>
<td>6</td>
<td>Beverly Drive</td>
<td>North Santa Monica Boulevard</td>
</tr>
<tr>
<td>7</td>
<td>Beverly Drive</td>
<td>South Santa Monica Boulevard</td>
</tr>
<tr>
<td>8</td>
<td>Cañon Drive</td>
<td>North Santa Monica Boulevard</td>
</tr>
<tr>
<td>9</td>
<td>Cañon Drive</td>
<td>South Santa Monica Boulevard</td>
</tr>
<tr>
<td>10</td>
<td>Rexford Drive</td>
<td>North Santa Monica Boulevard</td>
</tr>
<tr>
<td>11</td>
<td>Rexford Drive</td>
<td>South Santa Monica Boulevard</td>
</tr>
<tr>
<td>12</td>
<td>Palm Drive</td>
<td>Beverly Boulevard</td>
</tr>
<tr>
<td>13</td>
<td>Doheny Drive</td>
<td>North Santa Monica Boulevard/Melrose Avenue</td>
</tr>
<tr>
<td>14</td>
<td>Spalding Drive</td>
<td>Olympic Boulevard</td>
</tr>
<tr>
<td>15</td>
<td>Beverly Drive</td>
<td>Wilshire Boulevard</td>
</tr>
<tr>
<td>16</td>
<td>Beverwil Drive</td>
<td>Olympic Boulevard</td>
</tr>
<tr>
<td>17</td>
<td>Beverly Drive</td>
<td>Olympic Boulevard</td>
</tr>
<tr>
<td>18</td>
<td>North Cañon Drive</td>
<td>Wilshire Boulevard</td>
</tr>
<tr>
<td>19</td>
<td>Foothill Road</td>
<td>Burton Way</td>
</tr>
<tr>
<td>20</td>
<td>Rexford Drive</td>
<td>Wilshire Boulevard</td>
</tr>
<tr>
<td>21</td>
<td>Rexford Drive</td>
<td>Olympic Boulevard</td>
</tr>
<tr>
<td>22</td>
<td>Doheny Drive</td>
<td>Beverly Boulevard</td>
</tr>
<tr>
<td>23</td>
<td>Doheny Drive</td>
<td>Burton Way</td>
</tr>
<tr>
<td>24</td>
<td>Doheny Drive</td>
<td>Wilshire Boulevard</td>
</tr>
<tr>
<td>25</td>
<td>Doheny Drive</td>
<td>Olympic Boulevard</td>
</tr>
<tr>
<td>26</td>
<td>La Peer Drive</td>
<td>Burton Way</td>
</tr>
<tr>
<td>27</td>
<td>La Peer Drive</td>
<td>Wilshire Boulevard</td>
</tr>
<tr>
<td>28</td>
<td>Le Peer Drive</td>
<td>Olympic Boulevard</td>
</tr>
<tr>
<td>29</td>
<td>Robertson Boulevard</td>
<td>Burton Way</td>
</tr>
<tr>
<td>30</td>
<td>Robertson Boulevard</td>
<td>Wilshire Boulevard</td>
</tr>
<tr>
<td>31</td>
<td>Robertson Boulevard</td>
<td>Olympic Boulevard</td>
</tr>
<tr>
<td>32</td>
<td>Willaman Drive</td>
<td>Wilshire Boulevard</td>
</tr>
<tr>
<td>33</td>
<td>La Cienega Boulevard</td>
<td>Wilshire Boulevard</td>
</tr>
<tr>
<td>34</td>
<td>Gale Drive</td>
<td>Wilshire Boulevard</td>
</tr>
<tr>
<td>35</td>
<td>San Vicente Boulevard</td>
<td>Wilshire Boulevard</td>
</tr>
</tbody>
</table>
LOCATIONS OF ANALYZED INTERSECTIONS

Figure 3.8-5

Source: KAKU Associates, 2005

N:\GISProjects\Beverly_Hills_GPU_10600\Basemap.mxd

Figure 3.8-5
Volume/Capacity Analysis

The methodology used by the City to analyze intersection operating conditions is called the Intersection Capacity Utilization (ICU) method. The ICU method provides a technique to calculate the operating conditions at signalized intersections. The method simply takes a sum of the volume making each of the critical movements and compares it with the sum of the saturation flow rates for each of these movements. The key output from an ICU calculation is a number analogous to the intersection volume to capacity ratio.

The ICU provides a direct quantitative assessment of the intersection's volume related to its capacity. The ICU is used to evaluate the operational effectiveness of each intersection, which is described generally in terms of level of service. The ICU level of service gives insight into how an intersection is functioning and how much extra capacity is available to handle traffic fluctuations and incidents.

Appendix A3 summarizes the weekday and weekend volume/capacity (V/C) ratio and associated level of service for each analyzed intersection. The tables indicate that under current operating conditions, up to fourteen of the thirty-five analyzed intersections operate at LOS E or F. Figure 3.8-6a through Figure 3.8-6d summarize the LOS for each of the thirty-five key intersections during the morning and evening peak hour for a typical weekday.

The City of Beverly Hills maintains and periodically updates this data in its TRAFFIX database, a computer software program used to store and analyze traffic data for these thirty-five locations in the city.

Truck Routes

The City has designated certain routes for the movement of trucks, defined as vehicles over three-ton gross vehicle weight. The truck routes that are intended for the movement of large vehicles through the City include the following streets:

- Alden Drive
- Bedford Drive from Wilshire Boulevard to Santa Monica Boulevard
- Beverly Boulevard
- Beverly Drive from south of the city limits to North Santa Monica Boulevard
- Brighton Way from Canon Drive to Wilshire Boulevard
- Burton Way
- Camden Drive from Wilshire Boulevard to North Santa Monica Boulevard
- Canon Drive from Wilshire Boulevard to North Santa Monica Boulevard
- Civic Center Drive from Burton Way to South Santa Monica Boulevard
- Crescent Drive between the north and south roadways of Santa Monica Boulevard
- Dayton Way from Canon Drive to Wilshire Boulevard
- Doheny Drive
- Foothill Road from Burton Way to South Santa Monica Boulevard
- La Cienega Boulevard
LEVEL OF SERVICE AT ANALYZED INTERSECTIONS WEEKDAY MORNING PEAK HOUR

LEGEND:
- Intersection LOS (A-D)
- Intersection LOS (E, F)
- Los Angeles/West Hollywood City Limits
- Beverly Hills City Limits

Source: KAKU Associates, 2005

Figure 3.8-6A
LEVEL OF SERVICE AT ANALYZED INTERSECTIONS
WEEKEND AFTERNOON PEAK HOUR

LEGEND:
A Intersection LOS (A-D)
B Intersection LOS (E, F)
- Los Angeles/West Hollywood City Limits
- Beverly Hills City Limits

Source: KAKU Associates, 2005

Figure 3.8-6C
LEVEL OF SERVICE AT ANALYZED INTERSECTIONS WEEKEND MID-DAY PEAK HOUR

Source: KAKU Associates, 2005

LEGEND:
- Intersection LOS (A-D)
- Intersection LOS (E, F)
- - Los Angeles/West Hollywood City Limits
- - Beverly Hills City Limits

Figure 3.8-6D
- Linden Drive from Wilshire Boulevard to South Santa Monica Boulevard
- Maple Drive from Burton Way to South Santa Monica Boulevard
- Olympic Boulevard
- Rexford Drive from North Santa Monica Boulevard to Burton Way
- Robertson Boulevard
- Rodeo Drive from Wilshire Boulevard to North Santa Monica Boulevard
- Roxbury Drive from Wilshire Boulevard to North Santa Monica Boulevard
- San Vicente Boulevard
- North Santa Monica Boulevard and South Santa Monica Boulevard
- Wilshire Boulevard

Use of other streets by these vehicles is prohibited in order to minimize their effect on local traffic and on adjoining land uses. Figure 3.8-7 illustrates these truck routes on the City street network.

Parking

Parking facilities are a critical component of the vehicle circulation system, as they represent the actual origins or destinations of driving trips.

Commercial Parking

Parking for commercial uses located within the city is provided in a system of city-owned and operated parking structures and surface lots (in the Business Triangle, South Beverly Drive, and South La Cienega Boulevard), on-street parking spaces (primarily metered for one hour), and privately-owned and operated parking structures and surface lots. Figure 3.8-8 displays the locations of the major city-owned public parking structures and surface lots within the City, along with the parking capacity available in these facilities. Appendix A4 provides information on the City's parking structures capacity, hours of operation, and rates.

Parking along streets is usually determined by the functional classification of the roads. An arterial street is designed to carry through traffic, and typically does not provide on-street parking except for emergencies, however, in Los Angeles County, including Beverly Hills, off-peak period parking is commonly permitted on streets that function as arterials. A collector street is designed to carry traffic between local streets and streets of higher classification, and generally allows parking. A local street, designed to provide for local traffic movements, generally also allows parking for adjacent land uses. The supply of off-street parking for commercial structures in some areas is inadequate or expensive compared to free street parking in nearby residential areas.

Zones for tour bus loading and staging have been established in the Business Triangle.

Residential Parking

In some single-family and multi-family residential areas of the City, the off-street parking supply is inadequate to meet the demand, causing residents to use street parking. In some
areas they are in competition with people parking to visit nearby commercial buildings. Parking between the hours of 2:30 and 5:00 A.M. is prohibited citywide. A system of exemptions from the overnight prohibition for multi-family residents and the establishment of permit parking zones that restricts street parking to residents partially, but not entirely, relieve the demand for street parking. Figure 3.8-9 shows the general areas of the City that are covered by established permit parking zones. Appendix A5 shows the existing overnight parking permit map and preferential parking permit map.

Public Transit Service

Four separate transit agencies provide bus service in the City of Beverly Hills. The Los Angeles County Metropolitan Transportation Authority (Metro or MTA) operates the majority of the fixed-route bus transit service, with 16 bus lines within the City. The City of Santa Monica Big Blue Bus (SM), the Antelope Valley Transit Authority (AV), and the Los Angeles Department of Transportation (LADOT) also provide limited transit routes within and through the City. A description of each line that is currently operational in the City is provided below. Figure 3.8-10 shows the location of public transit routes in the City.

A transit priority system is currently being constructed and integrated with the City traffic signal network on Wilshire, Olympic, La Cienega, and Santa Monica Boulevards to provide extended green time for MTA’s Rapid buses. The installation is expected to be completed by early 2006.

Transit Ridership

The following were analyzed to estimate the onboard passenger loads on the various transit lines passing through City:

- Santa Monica Boulevard/Canon Drive: Approximately 1,380 passengers in both directions during the morning peak hour and 1,690 in the evening peak hour.
- Santa Monica Boulevard/Wilshire Boulevard: Approximately 5,170 passengers in both directions during the morning peak hour and 4,900 in the evening peak hour.
- Beverly Drive/Wilshire Boulevard: Approximately 4,520 passengers in both directions during the morning peak hour and 3,830 in the evening peak hour.
- Olympic Boulevard/South Beverly Drive: Approximately 510 passengers in both directions during the morning peak hour and 460 in the evening peak hour.
- La Cienega Boulevard/Wilshire Boulevard: Approximately 5,240 passengers in both directions during the morning peak hour and 4,360 in the evening peak hour.
- Beverly Boulevard/Santa Monica Boulevard: Approximately 1,190 passengers in both directions during the morning peak hour and 1,399 in the evening peak hour.
CITY of BEVERLY HILLS
General Plan

Figure 3.8-7
Source: KAKU Associates, 2005

TRUCK ROUTES

LEGEND:
- Truck Route
- Los Angeles/West Hollywood City Limits
- Beverly Hills City Limits
Figure 3.8-8
Source: KAKU Associates, 2005

LEGEND:
Public Parking Garage Location & Available Parking
Mode Split

Mode split is the percentage of travelers who use each of the different travel modes, which include single occupant vehicles, car pool vehicles, transit (e.g., bus, light rail, heavy rail), bike, and walking. Mode splits can be measured among many different groups, including, but not limited to: employees of a specific employer, residential populations, and all travelers to certain sites or geographic areas.

Los Angeles County Metropolitan Transportation Authority

The Los Angeles County Metropolitan Transportation Authority (Metro or MTA) operates the following sixteen fixed-route bus lines described below. The base fare for Metro buses is $1.35 per boarding or $3.00 per day for unlimited boarding. Tokens are available at the rate of $1.10. Metro offers weekly, biweekly, and monthly passes at $14, $27, and $52 respectively.

MTA Lines 2, 302, and 305

Lines 2 and 302 provide transit service from Pacific Palisades to downtown Los Angeles. Line 302 is a limited version of Line 2, and, therefore, only stops at selected bus stops. Line 305 runs along Sunset Boulevard and provides transit service between the University of California, Los Angeles (UCLA) area and the Watts area south of downtown Los Angeles. Line 305 also only stops at selected bus stops. The lines travel on Sunset Boulevard within the City of Beverly Hills. The three lines run standard Monday through Friday schedules with different schedules on Saturday, Sundays and holidays.

MTA Lines 4 and 304

Lines 4 and 304 operate primarily along Santa Monica Boulevard in the City of Beverly Hills and provide transit service from downtown Santa Monica to downtown Los Angeles. Line 304 is a limited version of Line 4, and therefore only stops at selected bus stops. Both lines operate standard Monday through Friday schedules with different schedules on Saturdays, Sundays and holidays.

MTA Line 14

Line 14 operates along Beverwil Drive, Beverly Drive, Canon Drive, Santa Monica Boulevard, and Beverly Boulevard in the City of Beverly Hills and provides transit service between the City of Beverly Hills and downtown Los Angeles. Line 14 runs standard Monday through Friday schedules with different schedules on Saturdays, Sundays and holidays.
LEGEND:

Metropolitan Transit Authority
- MTA Line 2, 302 & 305 - Sunset Boulevard
- MTA Line 4 & 304 - Santa Monica Boulevard
- MTA Line 14 - Cañon Drive, Beverly Drive & Beverly Boulevard,
 MTA Line 20, 21 - Wilshire Boulevard
- MTA Line 28, 328 - Olympic Boulevard
- MTA Line 105 - La Cienega Boulevard
- MTA Line 220 - Robertson Boulevard
- MTA Line 720 - Wilshire Boulevard

Antelope Valley Transit Authority
- AV Line 786 - Rodeo Drive & Wilshire Boulevard

Santa Monica Municipal Bus Lines
- SM Line 5 - Olympic Boulevard

Metro RAPID
- RAPID Line 714 - Santa Monica Blvd

Los Angeles/West Hollywood City Limits
- Beverly Hills City Limits

Source: KAKU Associates, 2005
MTA Lines 16 and 316

Lines 16 and 316 operate along Santa Monica Boulevard and Burton Way within the City of Beverly Hills and provide transit service between the Century City area of Los Angeles and downtown Los Angeles. Line 316 is a limited version of Line 16, and therefore only stops at selected bus stops. Both lines run standard Monday through Friday schedules with different schedules on Saturdays, Sundays and holidays.

MTA Lines 20 and 21

Lines 20 and 21 operate along Wilshire Boulevard within the City of Beverly Hills. Line 20 provides transit service between City of Santa Monica and downtown Los Angeles via Westwood where Line 21 combines with Line 20.

MTA Lines 28 and 328

Lines 28 and 328 operate along Olympic Boulevard within the City of Beverly Hills and provide transit service between the Century City area of Los Angeles and downtown Los Angeles. Line 328 is a limited version of Line 28, and therefore only stops at selected bus stops. Both lines run standard Monday through Friday schedules with different schedules on Saturdays, Sundays and holidays.

MTA Line 105

Line 105 operates along La Cienega Boulevard within the City of Beverly Hills and provides transit service between the City of Culver City and Vernon via the Crenshaw area of Los Angeles. Line 105 runs standard Monday through Friday schedules with different schedules on Saturdays, Sundays and holidays.

MTA Line 220

Line 220 operates along Robertson Boulevard within the City of Beverly Hills and provides transit service between Los Angeles International Airport (LAX) and the City of West Hollywood. Line 220 runs standard Monday through Friday schedules with different schedules on Saturdays, Sundays and holidays.

MTA Line 714

Line 714 is part of the MTA’s Rapid Bus network and operates along Santa Monica Boulevard (North) and Beverly Boulevard, stopping at limited locations within the City of Beverly Hills. The line provides transit service between Beverly Hills and downtown Los Angeles and will use the transit priority system being integrated into the traffic signals along Santa Monica Boulevard by early 2006.
MTA Line 720

Line 720, the Metro Rapid bus, provides limited-stop service between Santa Monica, downtown Los Angeles, and East Los Angeles/Montebello via Wilshire Boulevard and Whittier Boulevard. This line operates on Wilshire Boulevard within the City of Beverly Hills.

Antelope Valley Transit Authority

AV Line 786

Line 786 is a commuter express route that provides transit service for commuters between Lancaster/Palmdale and the Century City/West Los Angeles area of Los Angeles. The line runs two buses in the morning from Lancaster/Palmdale to Century City/West Los Angeles and two buses in the reverse route during the afternoon peak period from Century City/West Los Angeles to Lancaster/Palmdale. The line operates along Santa Monica Boulevard and Wilshire Boulevard within the City of Beverly Hills with stops at selected locations.

Santa Monica Municipal Bus Lines—Big Blue Bus

SM Line 5

The Santa Monica Big Blue Bus Line 5 operates between 4th Street in the City of Santa Monica and Rimpau Transit Center at the intersection of Pico and San Vicente Boulevards. This route provides transit service along Olympic Boulevard in the City of Beverly Hills.

Neighboring Transit Facilities

Other transit agencies like Culver CityBus, LADOT’s DASH Service, and Santa Clarita Transit Authority operate in the areas around Beverly Hills and provide connections to bus lines operating in the City.

Pedestrian Facilities

The City of Beverly Hills actively promotes walking as a viable means of transportation. Recently, upgrades in urban design and pedestrian amenities have been completed in the Business Triangle, including mid-block signalized crosswalks and widened sidewalks. The Business District also features some diagonal pedestrian intersection crossings (with an exclusive pedestrian crossing phase) and an ordinance limiting ground floor street frontage of businesses not considered to be pedestrian-friendly. The City’s pedestrian facilities include sidewalks, stairs, pedestrian promenades, and paths in the City’s parks. These facilities are a critical component of the overall circulation system, as nearly every trip begins and ends on foot, regardless of any other travel modes that may be used. While not all trips utilize public pedestrian facilities, they are essential in allowing the safe and orderly movement of pedestrians through the City’s public spaces.
The City maintains an extensive network of sidewalks, which are located on both sides of most streets, and has installed curb ramps at various locations throughout the City to improve access for the disabled and others.

Bicycles

There are no established bicycle paths in the City based on concerns for safety on the City’s congested streets. The City of West Hollywood has a bike path along Santa Monica Boulevard to the eastern Beverly Hills city limits, as will the Santa Monica Boulevard Transit Parkway in Los Angeles on the western city limits when it is completed.

Issues

- Local and destination traffic competes with regional and pass-through traffic in Beverly Hills. A circulation plan that sets goals and provides a program of short- and long-term improvements should be formulated and strategically implemented by decision-makers both independently in the City and in concert with regional partners.

- A circulation plan should include a position with regard to expansion of various forms of transit service in Beverly Hills, including enhancements to bus service, bus rapid transit, and extension of the Metro RedLine.

- Santa Monica Boulevard congestion must be addressed. The State Route 2 relinquishment to City control and the Santa Monica Boulevard Transit Parkway project present opportunities to develop a circulation plan that would improve traffic flows such as a potential additional westbound lane on the north roadway. The corollary issue is identifying the optimal functional relationship between the north and south roadways of Santa Monica Boulevard and identifying improvements to bring about any changes deemed appropriate by decision-makers.

- Monitor traffic flows and any planned transportation improvements to avoid intrusion into residential areas from Wilshire Boulevard. For example, there are concerns with the role of Metro Rapid Bus on Wilshire Boulevard in the event peak hour bus priority lanes are contemplated in the future. Such lanes must be integrated with traffic flow while accommodating stops for passengers, critical left-turn movements, and medians, and avoid impacts of spillover auto traffic into surrounding residential areas.

- Commuter traffic between the City and the San Fernando Valley using the canyon routes disrupts the residential areas on the northern edge of the City, however, the impact on the streets in the northern area must be taken into consideration when contemplating any improvements for traffic flow in Santa Monica Boulevard, such as reducing the number of closely spaced signals adjacent to the Business Triangle.

- Residential neighborhoods continue to experience pressure from the traffic intrusion from regional and other non-local traffic, which could be reduced by encouraging motorists to remain on the primary arterials.

- The City is challenged with the ability to provide adequate off-street parking for the Business Triangle while ensuring that the area does not become overbuilt with parking spaces.
The lack of adequate numbers of appropriately priced off-street parking spaces in commercial areas leads to increased congestion from drivers searching for street parking and intrusion into residential areas. Policies are needed to address parking utilization of existing parking (by employees and business patrons) to reduce such congestion and better accommodate parking demand. The impact of parking policies and supply on urban form, character, and land use should be considered, particularly as they affect under-parked, older commercial streets such as Robertson Boulevard, South Beverly Drive, and Olympic Boulevard.

The gap in the bike path on Santa Monica Boulevard should be considered and the City’s policy reassessed at such time as planning for improvements to Santa Monica Boulevard takes place.